Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
J Immunoassay Immunochem ; : 1-21, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38551181

RESUMO

Rhinoviruses (RV) are the major cause of chronic obstructive pulmonary disease and are associated with exacerbation development as well as community-acquired pneumonia in children, leading to substantial morbidity, mortality, and hospital admission. Here we have examined how changes at the amino terminal of the conserved VP4 epitope of different RV serotypes may affect pulmonary cytokine and chemokine responses and disease severity. Samples positive for rhinovirus were used for genetic characterization, followed by profiling gene expression of pulmonary Th1 and Th2 cytokines/chemokines by RT-PCR arrays. Genetic sequencing and homology 3D modeling revealed changes at the amino terminal of the conserved viral protein 4 (VP4) epitope in the RV-A101 serotype, especially serine at several positions that are important for interactive binding with the host immune cells. We found dysregulation of pulmonary gene expression of Th1- and Th2-related cytokines and chemokines in RV-A 101 and RV-C 8 pneumonia patients. These findings might contribute to a better understanding of RV immunity and the potential mechanisms underlying the pathogenesis of severe RV infections, but further functional studies are needed to confirm the causal relationship.

2.
Saudi Med J ; 45(3): 223-229, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38438201

RESUMO

Lung cancer is a complicated and challenging disease and is one of the most common causes of cancer-related mortality worldwide. Within the lung microenvironment, specific cytokines, including the B cell activation factor (BAFF) and the A proliferation-inducing ligand (APRIL), are produce by various cells, notably airway epithelial cells, in response allergic inflammation or pulmonary infection. These cytokines play a critical role in maintaining local immune responses and fostering the survival of immune cells. The BAFF and APRIL system have been connected in a range of malignancies and have shown their potential in inducing drug resistance and promoting cancer progression. This review highlights recent studies on the involvement of BAFF and APRIL in various cancers, focusing mainly on their role in lung cancer, and discusses the possibility of these molecules in contributing to drug resistance and cancer progression following pulmonary infection. We suggest consideration the targeting BAFF and APRIL or their respective receptors as promising novel therapies for effective treatment of lung cancer, especially post pulmonary infection. However, it remains important to conduct further investigations to fully elucidate the precise mechanisms underlying how the BAFF and APRIL systems enhance cancer survival and drug resistance subsequent pulmonary infections.


Assuntos
Neoplasias Pulmonares , Pneumonia , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Ligantes , Citocinas , Imunidade , Microambiente Tumoral
3.
Artigo em Inglês | MEDLINE | ID: mdl-38085438

RESUMO

In the face of rising antibiotic resistance and the need for novel therapeutic approaches against cancer, the present study delves into the various facets of biosynthesized silver nanoparticles (AgNPs) derived from the probiotic strain Lactobacillus casei (AgNPs-LC), assessing their efficacy in combating bacterial infections, disrupting biofilm formation, interfering with quorum sensing mechanisms, and exhibiting anti-cancer properties. The results showed that the AgNPs-LC had a spherical shape with an average size of 15 nm. The biosynthesized AgNPs-LC showed a symmetrical absorption spectrum with a peak at 458 nm with a diameter of 5-20 nm. AgNPs-LC exhibited significant antibacterial activity against Gram-positive and Gram-negative bacteria and inhibited the biofilm formation (> 50% at sub-MIC) and quorum sensing-mediated virulence factors, such as the production of violacein in C. violaceum (> 80% at sub-MIC), pyocyanin in P. aeruginosa (> 70% at sub-MIC), and prodigiosin in S. marcescens (> 80% at sub-MIC). The exopolysaccharides (EPS) were also found to reduce in the presence of AgNPs-LC. Furthermore, the AgNPs-LC showed anti-cancer and anti-metastasis activity via inhibiting cell migration and invasion of human lung cancer (A-549) cells. Overall, the present study brings out the multifaceted therapeutic capabilities of AgNPs-LC which offer exciting prospects for the development of innovative biomedical and pharmaceutical interventions, making AgNPs-LC a versatile and promising candidate for a wide range of applications in healthcare and medicine. However, further research is essential to fully harness their therapeutic potential.

4.
Biomolecules ; 13(10)2023 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-37892156

RESUMO

We evaluated the therapeutic potentials of Khudari fruit pulp, a functional food and cultivar of Phoenix dactylifera, against neurological disorders. Our results demonstrate a good amount of phytochemicals (total phenolic content: 17.77 ± 8.21 µg GA/mg extract) with a high antioxidant potential of aqueous extract (DPPH assay IC50 = 235.84 ± 11.65 µg/mL) and FRAP value: 331.81 ± 4.56 µmol. Furthermore, the aqueous extract showed the marked inhibition of cell-free acetylcholinesterase (electric eel) with an IC50 value of 48.25 ± 2.04 µg/mL, and an enzyme inhibition kinetics study revealed that it exhibits mixed inhibition. Thereafter, we listed the 18 best-matched phytochemical compounds present in aqueous extract through LC/MS analysis. The computational study revealed that five out of eighteen predicted compounds can cross the BBB and exert considerable aqueous solubility. where 2-{5-[(1E)-3-methylbuta-1,3-dien-1-yl]-1H-indol-3-yl}ethanol (MDIE) indicates an acceptable LD50. value. A molecular docking study exhibited that the compounds occupied the key residues of acetylcholinesterase with ΔG range between -6.91 and -9.49 kcal/mol, where MDIE has ∆G: -8.67 kcal/mol, which was better than that of tacrine, ∆G: -8.25 kcal/mol. Molecular dynamics analyses of 100 ns supported the stability of the protein-ligand complexes analyzed through RMSD, RMSF, Rg, and SASA parameters. TRP_84 and GLY_442 are the most critical hydrophobic contacts for the complex, although GLU_199 is important for H-bonds. Prime/MM-GBSA showed that the protein-ligand complex formed a stable confirmation. These findings suggest that the aqueous extract of Khudari fruit pulp has significant antioxidant and acetylcholinesterase inhibition potentials, and its compound, MDIE, forms stably with confirmation with the target protein, though this fruit of Khudari dates can be a better functional food for the treatment of Alzheimer's disease. Further investigations are needed to fully understand the therapeutic role of this plant-based compound via in vivo study.


Assuntos
Colinesterases , Phoeniceae , Antioxidantes/farmacologia , Antioxidantes/química , Acetilcolinesterase/metabolismo , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Phoeniceae/química , Phoeniceae/metabolismo , Cromatografia Líquida , Simulação de Acoplamento Molecular , Ligantes , Espectrometria de Massas em Tandem , Compostos Fitoquímicos
5.
Saudi Med J ; 44(10): 965-972, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37777266

RESUMO

Host immune response to coronaviruses and the role of cross-reactivity immunity among different coronaviruses are crucial for understanding and combating the continuing COVID-19 outbreak and potential subsequent pandemics. This review paper explores how previous exposure to common cold coronaviruses and more pathogenic coronaviruses may elicit a protective immune response against SARS-CoV-2 infection, and discusses the challenges posed by some variants of concern that may escape current vaccines. It also highlights the need for a mucosal universal vaccine that can induce long-term protection against current and emerging coronaviruses by leveraging cross-reactive immunity. We propose a novel mucosal universal vaccine that consists of cross-reactive antigenic peptides with highly conserved epitopes among coronaviruses, conjugated with an immunostimulant adjuvant cytokine, including B-cell activating factor (BAFF). This vaccine may enhance the local mucosal adaptive response, induce tissue-resident memory cells, and inhibit viral replication and clearance. However, further research is required to evaluate its safety and efficacy.


Assuntos
COVID-19 , Vacinas Virais , Humanos , COVID-19/prevenção & controle , SARS-CoV-2 , Vacinas contra COVID-19 , Citocinas
6.
Oncol Res ; 31(5): 819-831, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37547754

RESUMO

N6-methyladenosine methylation (m6A) is a common type of epigenetic alteration that prominently affects the prognosis of tumor patients. However, it is unknown how the m6A regulator affects the tumor microenvironment (TME) cell infiltration in adrenocortical carcinoma (ACC) and how it affects the prognosis of ACC patients yet. The m6A alteration patterns of 112 ACC patients were evaluated, furthermore, the association with immune infiltration cell features was investigated. The unsupervised clustering method was applied to typify the m6A alteration patterns of ACC patients. The principal component analysis (PCA) technique was taken to create the m6A score to assess the alteration pattern in specific malignancies. We found two independent patterns of m6A alteration in ACC patients. The TME cell infiltration features were significantly in accordance with phenotypes of tumor immune-inflamed and immune desert in both patterns. The m6Ascore also served as an independent predictive factor in ACC patients. The somatic copy number variation (CNV) and patients prognosis can be predicted by m6A alteration patterns. Moreover, the ACC patients with high m6A scores had better overall survival (OS) and higher efficiency in immune checkpoint blockade therapy. Our work demonstrated the significance of m6A alteration to the ACC patients immunotherapy. The individual m6A alteration patterns analysis might contribute to ACC patients prognosis prediction and immunotherapy choice.


Assuntos
Neoplasias do Córtex Suprarrenal , Carcinoma Adrenocortical , Humanos , Adenosina , Neoplasias do Córtex Suprarrenal/genética , Neoplasias do Córtex Suprarrenal/terapia , Carcinoma Adrenocortical/genética , Carcinoma Adrenocortical/terapia , Variações do Número de Cópias de DNA , Metilação , Microambiente Tumoral/genética
7.
Vaccines (Basel) ; 11(6)2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37376439

RESUMO

The annual seasonal influenza vaccination is the most effective way of preventing influenza illness and hospitalization. However, the effectiveness of influenza vaccines has always been controversial. Therefore, we investigated the ability of the quadrivalent influenza vaccine to induce effective protection. Here we report strain-specific influenza vaccine effectiveness (VE) against laboratory-confirmed influenza cases during the 2019/2020 season, characterized by the co-circulation of four different influenza strains. During 2019-2020, 778 influenza-like illness (ILI) samples were collected from 302 (39%) vaccinated ILI patients and 476 (61%) unvaccinated ILI patients in Riyadh, Saudi Arabia. VE was found to be 28% and 22% for influenza A and B, respectively. VE for preventing A(H3N2) and A(H1N1)pdm09 illness was 37.4% (95% CI: 43.7-54.3) and 39.2% (95% CI: 21.1-28.9), respectively. The VE for preventing influenza B Victoria lineage illness was 71.7% (95% CI: -0.9-3), while the VE for the Yamagata lineage could not be estimated due to the limited number of positive cases. The overall vaccine effectiveness was moderately low at 39.7%. Phylogenetic analysis revealed that most of the Flu A genotypes in our dataset clustered together, indicating their close genetic relatedness. In the post-COVID-19 pandemic, flu B-positive cases have reached three-quarters of the total number of influenza-positive cases, indicating a nationwide flu B surge. The reasons for this phenomenon, if related to the quadrivalent flu VE, need to be explored. Annual monitoring and genetic characterization of circulating influenza viruses are important to support Influenza surveillance systems and to improve influenza vaccine effectiveness.

8.
Molecules ; 28(8)2023 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-37110523

RESUMO

Chronic lymphocytic leukemia (CLL) is an incurable neoplasm of B-lymphocytes, which accounts for about one-third of all leukemias. Ocimum sanctum, an herbaceous perennial, is considered as one of the important sources of drugs for the treatment of various diseases, including cancers and autoimmune diseases. The present study was designed to screen various phytochemicals of O. sanctum for discovering their potential to inhibit Bruton's tyrosine kinase (BTK), a well-known drug target of CLL. Various phytochemicals of O. sanctum were screened for their potential to inhibit BTK using several in silico protocols. First, the molecular docking approach was used to calculate the docking scores of the selected phytochemicals. Then, the selected top-ranked phytochemicals were screened for their physicochemical characteristics using ADME analysis. Finally, the stability of the selected compounds in their corresponding docking complexes with BTK was analysed using molecular dynamics simulations. Primarily, our observations revealed that, out of the 46 phytochemicals of O. sanctum, six compounds possessed significantly better docking scores (ranging from -9.2 kcal/mol to -10 kcal/mol). Their docking scores were comparable to those of the control inhibitors, acalabrutinib (-10.3 kcal/mol), and ibrutinib (-11.3 kcal/mol). However, after ADME analysis of these top-ranked six compounds, only three compounds (Molludistin, Rosmarinic acid, and Vitexin) possessed drug likeliness characteristics. During the MD analysis, the three compounds Molludistin, Rosmarinic acid, and Vitexin were found to remain stable in the binding pocket in their corresponding docking complexes with BTK. Therefore, among the 46 phytochemicals of O. sanctum tested in this study, the three compounds, Molludistin, Rosmarinic acid, and Vitexin are the best inhibitors of BTK. However, these findings need to be confirmed by biological experiments in the laboratory.


Assuntos
Leucemia Linfocítica Crônica de Células B , Humanos , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Leucemia Linfocítica Crônica de Células B/metabolismo , Tirosina Quinase da Agamaglobulinemia/metabolismo , Simulação de Acoplamento Molecular , Ocimum sanctum/metabolismo , Inibidores de Proteínas Quinases/química
9.
J Biomol Struct Dyn ; 41(23): 14460-14472, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36826428

RESUMO

The epidermal growth factor receptor (EGFR) has been shown to be extremely important in numerous signaling pathways, particularly those involved in cancer progression. Many therapeutic inhibitors, consisting of both small molecules and monoclonal antibodies, have been developed to target inflammatory, triple-negative and metastatic breast cancer. With the emergence of resistance in breast cancer treatment strategies, there is a need to develop novel drug targets that not only overcome resistance, but also exhibit low toxicity and high specificity. The work presented here focuses on the identification of new inhibitors against the EGFR protein using combined computational approaches. Using a comprehensive machine learning-based virtual screening approach complemented by other computational approaches, we identified six new molecules from the ZINC database. The gold docking score of these six novel molecules is 125.95, 125.38, 123.13, 119.71, 115.64 and 113.73, respectively, while the gold score of the control group is 120.74. In addition, we also analyzed the FEC value of these compounds and found that the values of compounds 1, 2, 3 and 4 (-61.82, -63.98, -67.98 and -63.32, respectively) were higher are than those of the control group (-61.05). Furthermore, these molecules showed highly stable RMSD plots and good interaction of hydrogen bonds. The identified inhibitors provided interesting insights for understanding the electronic, hydrophobic, steric and structural requirements for EGFR inhibitory activity. Distinguishing these novel molecules could lead to the development of new drugs useful in treating breast cancer.Communicated by Ramaswamy H. Sarma.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Receptores ErbB/metabolismo , Desenvolvimento de Medicamentos , Desenho de Fármacos , Ouro , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Inibidores de Proteínas Quinases/química , Ligantes
10.
Heliyon ; 9(1): e12653, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36589720

RESUMO

The recent identification of the involvement of the immune system response in the severity and mortality of acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection highlights the importance of cytokines and chemokines as important factors in the clinical outcomes of COVID-19. However, the impact and roles of the BAFF/APRIL cytokine system, homeostatic chemokines (CXCL12, CXCL13, CCL19, and CCL21), as well as Toll-like receptor (TLR)-3/4 in COVID-19, have not been investigated. We sought to assess the expression levels and roles of TLR3/4, BAFF, APRIL, IFN-ß, homeostatic chemokines (CXCL12, CXCL13, CCL19, and CCL21), SARS-CoV-2 IgG and IgM antibodies in patients with critical (ICU) and non-ICU (mild) COVID-19 and their association with mortality and disease severity. Significant high levels of TLR-4 mRNA, IFN-ß, APRIL, CXCL13, and IgM and IgG antibodies were observed in ICU patients with severe COVID-19 compared to non-ICU COVID-19 patients and healthy controls. On the other hand, BAFF and CCL21 expression were significantly upregulated in non-ICU patients with COVID-19 compared with that in critical COVID-19 patients. The two groups did not differ in TLR-3, CXCL12, and CCL19 levels. Our findings show high expression levels of some inflammatory chemokines in ICU patients with COVID-19. These findings highlight the potential utility of chemokine antagonists as an immune-based treatment for the severe form of COVID-19. We also believe that selective targeting of TLR/spike protein interactions might lead to the development of a new COVID-19 therapy.

11.
CNS Neurol Disord Drug Targets ; 22(1): 84-97, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35352654

RESUMO

Due to rising environmental and global public health concerns associated with environmental contamination, human populations are continually being exposed to environmental toxicants, including physical chemical mutagens widespread in our environment causing adverse consequences and inducing a variety of neurological disorders in humans. Physical mutagens comprise ionizing and non-ionizing radiation, such as UV rays, IR rays, X-rays, which produces a broad spectrum of neuronal destruction, including neuroinflammation, genetic instability, enhanced oxidative stress driving mitochondrial damage in the human neuronal antecedent cells, cognitive impairment due to alterations in neuronal function, especially in synaptic plasticity, neurogenesis repression, modifications in mature neuronal networks drives to enhanced neurodegenerative risk. Chemical Mutagens including alkylating agents (EMS, NM, MMS, and NTG), Hydroxylamine, nitrous acid, sodium azide, halouracils are the major toxic mutagen in our environment and have been associated with neurological disorders. These chemical mutagens create dimers of pyrimidine that cause DNA damage that leads to ROS generation producing mutations, chromosomal abnormalities, genotoxicity which leads to increased neurodegenerative risk. The toxicity of four heavy metal including Cd, As, Pb, Hg is mostly responsible for complicated neurological disorders in humans. Cadmium exposure can enhance the permeability of the BBB and penetrate the brain, driving brain intracellular accumulation, cellular dysfunction, and cerebral edema. Arsenic exerts its toxic effect by induction of ROS production in neuronal cells. In this review, we summarize the molecular mechanism and mechanistic effects of mutagens in the environment and their role in multiple neurological disorders.


Assuntos
Doenças do Sistema Nervoso , Humanos , Doenças do Sistema Nervoso/induzido quimicamente
12.
J Immunoassay Immunochem ; 44(1): 13-30, 2023 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-35915975

RESUMO

There are limited data on inflammatory cytokines and chemokines; the humoral immune response; and main clinical laboratory parameters as indicators for disease severity and mortality in patients with critical and mild COVID-19 without comorbidities or immune-mediated diseases in Saudi Arabia. We determined the expression levels of major proinflammatory cytokines and chemokines; C-reactive protein (CRP); procalcitonin; SARS-CoV-2 IgM antibody and twenty-two clinical laboratory parameters and assessed their usefulness as indicators of disease severity and in-hospital death. Our results showed a significant increase in the expression levels of SARS-CoV-2 IgM antibody; IL1-ß; IL-6; IL-8; TNF-α and CRP in critical COVID-19 patients; neutrophil count; urea; creatinine and troponin were also increased. The elevation of these biomarkers was significantly associated and positively correlated with in-hospital death in critical COVID-19 patients. Our results suggest that the levels of IL1-ß; IL-6; IL-8; TNF-α; and CRP; neutrophil count; urea; creatinine; and troponin could be used to predict disease severity in COVID-19 patients without comorbidities or immune-mediated diseases. These inflammatory mediators could be used as predictive early biomarkers of COVID-19 disease deterioration; shock and death among COVID-19 patients without comorbidities or immune-mediated diseases.


Assuntos
COVID-19 , Mortalidade Hospitalar , Humanos , Biomarcadores , Proteína C-Reativa , COVID-19/diagnóstico , COVID-19/mortalidade , Creatinina , Citocinas , Interleucina-6 , Interleucina-8 , Gravidade do Paciente , SARS-CoV-2 , Troponina , Fator de Necrose Tumoral alfa , Quimiocinas
13.
Pharmaceuticals (Basel) ; 15(12)2022 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-36558907

RESUMO

Background: The coronavirus 2019 (COVID-19) disease, caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus led to a global pandemic. HCQ and FPV were used early in the pandemic as a treatment modality for COVID-19. Various studies evaluated the HCQ and FPV effectiveness, based on the mortality endpoint and showed conflicting results. We hypothesize that analyzing the difference in the LOS as a significant endpoint would be of a major interest, especially for healthcare providers, to prevent a lengthy hospitalization and disease progression. Methods: This is a retrospective observational study, conducted via a medical chart review of COVD-19 patients who were admitted between April 2020 and March 2021 with a moderate to severe illness. The LOS endpoint was tested using the paired Wilcoxon signed-rank (WSR) model. Prior to using the WSR model, the balance between the HCQ and FPV groups, the propensity score matching, the LOS distribution, and the normality assumptions were tested. Two sensitivity statistical analyses were conducted to confirm the results (stratified log-rank test and U Welch test after transforming the LOS by the squared root values). Results: A total of 200 patients were included for the analysis: 83 patients in the HCQ group and 117 patients in the FPV group. Thirty-seven patients were matched in each group. The LOS data was positively skewed and violated the normality (Shapiro−Wilk p < 0.001) and had an unequal variance (Levene's test, p = 0.019). The WSR test showed no statistical significance in the LOS endpoint, with a median of −0.75 days (95% confidence interval: −4.0 to 2.5, p = 0.629), in favor of the HCQ group (four days), in comparison to seven days of the FPV group. The WSR findings were further confirmed with the stratified log rank test (p = 740) and the U Welch test (p = 391). Conclusions: The study concluded that the HCQ and FPV treatments have a comparable effectiveness in terms of the LOS in the moderate to severe COVID-19 patients. This study highlights the importance of analyzing the LOS as a relevant endpoint, in order to prevent the costs of a lengthy hospitalization and disease progression. The current study also emphasizes the importance of applying the appropriate statistical testing when dealing with two-sample paired data and analyzing non-parametric data such as the LOS.

14.
Sci Rep ; 12(1): 17648, 2022 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-36271116

RESUMO

Chronic lymphocytic leukemia (CLL) is an incurable malignancy of B-cells. In this study, bioinformatics analyses were conducted to identify possible pathogenic roles of CK2α, which is a protein encoded by CSNK2A1, in the progression and aggressiveness of CLL. Furthermore, various computational tools were used to search for a competent inhibitor of CK2α from fungal metabolites that could be proposed for CLL therapy. In CLL patients, high-expression of CSNK2A1 was associated with early need for therapy (n = 130, p < 0.0001) and short overall survival (OS; n = 107, p = 0.005). Consistently, bioinformatics analyses showed CSNK2A1 to associate with/play roles in CLL proliferation and survival-dependent pathways. Furthermore, PPI network analysis identified interaction partners of CK2α (PPI enrichment p value = 1 × 10-16) that associated with early need for therapy (n = 130, p < 0.003) and have been known to heavily impact on the progression of CLL. These findings constructed a rational for targeting CK2α for CLL therapy. Consequently, computational analyses reported 35 fungal metabolites out of 5820 (filtered from 19,967 metabolites) to have lower binding energy (ΔG: - 10.9 to - 11.7 kcal/mol) and better binding affinity (Kd: 9.77 × 107 M-1 to 3.77 × 108 M-1) compared with the native ligand (ΔG: - 10.8, Kd: 8.3 × 107 M--1). Furthermore, molecular dynamics simulation study established that Butyl Xanalterate-CK2α complex continuously remained stable throughout the simulation time (100 ns). Moreover, Butyl Xanalterate interacted with most of the catalytic residues, where complex was stabilized by more than 65% hydrogen bond interactions, and a significant hydrophobic interaction with residue Phe113. Here, high-expression of CSNK2A1 was implicated in the progression and poor prognosis of CLL, making it a potential therapeutic target in the disease. Butyl Xanalterate showed stable and strong interactions with CK2α, thus we propose it as a competitive inhibitor of CK2α for CLL therapy.


Assuntos
Leucemia Linfocítica Crônica de Células B , Humanos , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Leucemia Linfocítica Crônica de Células B/genética , Leucemia Linfocítica Crônica de Células B/metabolismo , Ligantes , Linfócitos B/metabolismo , Biologia Computacional , Prognóstico
15.
Front Neurosci ; 16: 915122, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35958986

RESUMO

Alzheimer's disease (AD) is a neurodegenerative disease and the most prevalent form of dementia. The generation of oxygen free radicals and oxidative damage is believed to be involved in the pathogenesis of AD. It has been suggested that date palm, a plant rich in phenolic compounds and flavonoids, can provide an alternative treatment to fight memory loss and cognitive dysfunction due to its potent antioxidant activity. Thus, we studied the effect of flavonoids present in date palm on Aß1-40 amyloid formation using molecular docking and molecular dynamics simulation. AutoDock. Myricetin was used as a positive control drug. The flavonoids Diosmetin, Luteolin, and Rutin were found to be potent inhibitors of aggregation (docking energies ≤ -8.05 kcal mol-1) targeting Aß1-40 fibrils (both 2LMO and 6TI5), simultaneously. Further screening by physicochemical properties and drug-likeness analysis suggested that all flavonoids except Rutin followed Lipinski's rule of five. Rutin was, thus, taken as a negative control (due to its violation of Lipinski's rule) to compare its dynamics with Diosmetin. Diosmetin exhibited the highest positive scores for drug likeness. Since Luteolin exhibited moderate drug-likeness and better absorption properties, it was also included in molecular dynamics simulation. Molecular dynamics of shortlisted compounds (Rutin, Diosmetin, and Luteolin) were performed for 200 ns, and the results were analyzed by monitoring root mean square deviations (RMSD), root mean square fluctuation (RMSF) analysis, the radius of gyration (Rg), and solvent accessible surface area (SASA). The results proved the formation of a stable protein-compound complex. Based on binding energies and non-bonded interactions, Rutin and Luteolin emerged as better lead molecules than Diosmetin. However, high MW (610.5), lowest absorption rate (16.04%), and more than one violation of Lipinski's rule make Rutin a less likely candidate as an anti-amyloidogenic agent. Moreover, among non-violators of Lipinski's rule, Diosmetin exhibited a greater absorption rate than Luteolin as well as the highest positive scores for drug-likeness. Thus, we can conclude that Diosmetin and Luteolin may serve as a scaffold for the design of better inhibitors with higher affinities toward the target proteins. However, these results warrant in-vitro and in-vivo validation before practical use.

16.
Infect Drug Resist ; 15: 3791-3800, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35875613

RESUMO

Background: SARS-CoV-2 pandemic continues to threaten the human population with millions of infections and deaths worldwide. Vaccination campaigns undertaken by several countries have resulted in a notable decrease in hospitalization and deaths. However, with the emergence of new virus variants, it is critical to determine the longevity and the protection efficiency provided by the current authorized vaccines. Aim: The aims of this study are to provide data about the magnitude of immune responses in individuals fully vaccinated against COVID-19 in Riyadh province of Saudi Arabia. Also, to evaluate the continuity of specific IgG levels and compare the titers in individuals who have been received two doses of the matched and mixed vaccines, including Pfizer and AstraZeneca against SARS-CoV-2 during the period of three to six months. Moreover, we analyze the current state of immune response in terms of antibody responses in thepopulation postvaccination using homogenous or hetrogenous vaccine regimen. Methods: A total of 141 healthy volunteers were recruited to our study; blood (n=63) and the saliva samples (n=78) and were collected from fully vaccinated individuals in Riyadh city. We employed a specific ELISA assay in plasma and saliva of fully vaccinated individuals. Results: IgG levels varied with age groups with the highest concentration in the age group 19-29 years, but the age group (≥50) had the lowest IgG concentration. The IgG levels in both serum and saliva were higher after three months and start to wane after six months. Individuals who received mixed types of vaccines had significantly better response than Pfizer vaccine alone. Conclusion: The current study investigates the status of humoral responses in different age groups, in terms of antibody measurements. These data will help to evaluate the need for further COVID-19 vaccine doses and to what extent a two-dose regimen will protect vaccinated individuals.

17.
Life (Basel) ; 12(7)2022 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-35888187

RESUMO

Healthcare systems have been under immense pressure since the beginning of the COVID-19 pandemic; hence, studies on using machine learning (ML) methods for classifying ICU admissions and resource allocation are urgently needed. We investigated whether ML can propose a useful classification model for predicting the ICU admissions of COVID-19 patients. In this retrospective study, the clinical characteristics and laboratory findings of 100 patients with laboratory-confirmed COVID-19 tests were retrieved between May 2020 and January 2021. Based on patients' demographic and clinical data, we analyzed the capability of the proposed weighted radial kernel support vector machine (SVM), coupled with (RFE). The proposed method is compared with other reference methods such as linear discriminant analysis (LDA) and kernel-based SVM variants including the linear, polynomial, and radial kernels coupled with REF for predicting ICU admissions of COVID-19 patients. An initial performance assessment indicated that the SVM with weighted radial kernels coupled with REF outperformed the other classification methods in discriminating between ICU and non-ICU admissions in COVID-19 patients. Furthermore, applying the Recursive Feature Elimination (RFE) with weighted radial kernel SVM identified a significant set of variables that can predict and statistically distinguish ICU from non-ICU COVID-19 patients. The patients' weight, PCR Ct Value, CCL19, INF-ß, BLC, INR, PT, PTT, CKMB, HB, platelets, RBC, urea, creatinine and albumin results were found to be the significant predicting features. We believe that weighted radial kernel SVM can be used as an assisting ML approach to guide hospital decision makers in resource allocation and mobilization between intensive care and isolation units. We model the data retrospectively on a selected subset of patient-derived variables based on previous knowledge of ICU admission and this needs to be trained in order to forecast prospectively.

18.
Vaccines (Basel) ; 10(8)2022 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-35893822

RESUMO

Mucosal surfaces are the first contact sites of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Most SARS-CoV-2 vaccines induce specific IgG responses but provide limited mucosal immunity. Cytokine B-cell activation factor (BAFF) and A proliferation-inducing ligand (APRIL) in the tumor necrosis factor (TNF) superfamily play key immunological functions during B cell development and antibody production. Furthermore, homeostatic chemokines, such as C-X-C motif chemokine ligand 13 (CXCL13), chemokine (C-C motif) ligand 19 (CCL19), and CCL21, can induce B- and T-cell responses to infection and promote the formation of inducible bronchus-associated lymphoid tissues (iBALT), where specific local immune responses and memory cells are generated. We reviewed the role of BAFF, APRIL, CXCL13, CCL19, and CCL21 in the activation of local B-cell responses and antibody production, and the formation of iBALT in the lung following viral respiratory infections. We speculate that mucosal vaccines may offer more efficient protection against SARS-CoV-2 infection than systematic vaccines and hypothesize that a novel SARS-CoV-2 mRNA mucosal vaccine using BAFF/APRIL or CXCL13 as immunostimulants combined with the spike protein-encoding mRNA may enhance the efficiency of the local immune response and prevent the early stages of SARS-CoV-2 replication and the rapid viral clearance from the airways.

19.
Brain Sci ; 12(6)2022 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-35741655

RESUMO

Calcium homeostasis modulator 1 (CALHM1) is a protein responsible for causing Alzheimer's disease. In the absence of an experimentally designed protein molecule, homology modelling was performed. Through homology modelling, different CALHM1 models were generated and validated through Rampage. To carry out further in silico studies, through molecular docking and molecular dynamics simulation experiments, various flavonoids and alkaloids from Bauhinia variegata were utilised as inhibitors to target the protein (CALHM1). The sequence of CALHM1 was retrieved from UniProt and the secondary structure prediction of CALHM1 was done through CFSSP, GOR4, and SOPMA methods. The structure was identified through LOMETS, MUSTER, and MODELLER and finally, the structures were validated through Rampage. Bauhinia variegata plant was used to check the interaction of alkaloids and flavonoids against CALHM1. The protein and protein-ligand complex were also validated through molecular dynamics simulations studies. The model generated through MODELLER software with 6VAM A was used because this model predicted the best results in the Ramachandran plot. Further molecular docking was performed, quercetin was found to be the most appropriate candidate for the protein molecule with the minimum binding energy of -12.45 kcal/mol and their ADME properties were analysed through Molsoft and Molinspiration. Molecular dynamics simulations showed that CALHM1 and CALHM1-quercetin complex became stable at 2500 ps. It may be seen through the study that quercetin may act as a good inhibitor for treatment. With the help of an in silico study, it was easier to analyse the 3D structure of the protein, which may be scrutinized for the best-predicted model. Quercetin may work as a good inhibitor for treating Alzheimer's disease, according to in silico research using molecular docking and molecular dynamics simulations, and future in vitro and in vivo analysis may confirm its effectiveness.

20.
Int J Rheum Dis ; 25(9): 1013-1019, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35748059

RESUMO

BACKGROUND: Rheumatoid arthritis (RA) is a chronic systemic inflammatory disorder which mainly affects small joints, occurs most commonly in middle-aged adults, and can be fatal in severe cases. The exact etiology of RA remains unknown. However, uncontrolled expression of pro-inflammatory cytokines and chemokines can contribute to the pathogenesis of RA. AIM: In the current study, we assessed the potential of serum concentrations of interleukin (IL)-1ß, IL-6, tumor necrosis factor (TNF)-α, IL-8, and C-C motif chemokine ligand (CCL)5 as early predictive markers for RA. METHODS: In addition to clinical examination, blood samples were collected from 100 Saudi patients recently diagnosed with early RA for basic and serological tests, including rheumatoid factor (RF), C-reactive protein (CRP), and erythrocyte sedimentation rate (ESR). Sera of 32 healthy individuals were used as controls. Specific enzyme-linked immunosorbent assay was used to quantify the serum IL-1ß, IL-6, TNF-α, IL-8, and CCL5 levels in the samples. RESULTS: Our results indicated that RF, CRP, and ESR levels were higher in RA patients compared to controls. Furthermore, serum levels of IL-1ß, IL-6, IL-8, and CCL5, but not TNF-α, significantly increased in RA patients compared to controls. CONCLUSION: Overall, the findings suggested that IL-1ß, IL-6, IL-8, and CCL5 can be used as biomarkers in the early diagnosis of RA.


Assuntos
Artrite Reumatoide , Interleucina-6 , Adulto , Biomarcadores , Proteína C-Reativa/análise , Humanos , Interleucina-8 , Pessoa de Meia-Idade , Fator Reumatoide , Arábia Saudita , Fator de Necrose Tumoral alfa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...